3.96 \(\int \frac {\csc (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=43 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f \sqrt {a+b}} \]

[Out]

-arctanh(sec(f*x+e)*(a+b)^(1/2)/(a+b*sec(f*x+e)^2)^(1/2))/f/(a+b)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4134, 377, 207} \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f \sqrt {a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-(ArcTanh[(Sqrt[a + b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]]/(Sqrt[a + b]*f))

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 4134

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Cos[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^
n)^p)/x^(m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (Gt
Q[m, 0] || EqQ[n, 2] || EqQ[n, 4])

Rubi steps

\begin {align*} \int \frac {\csc (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{-1-(-a-b) x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{\sqrt {a+b} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 86, normalized size = 2.00 \[ -\frac {\sec (e+f x) \sqrt {a \cos (2 e+2 f x)+a+2 b} \tanh ^{-1}\left (\frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {a+b}}\right )}{\sqrt {2} f \sqrt {a+b} \sqrt {a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-((ArcTanh[Sqrt[a + b - a*Sin[e + f*x]^2]/Sqrt[a + b]]*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]]*Sec[e + f*x])/(Sqrt[
2]*Sqrt[a + b]*f*Sqrt[a + b*Sec[e + f*x]^2]))

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 140, normalized size = 3.26 \[ \left [\frac {\log \left (\frac {2 \, {\left (a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a + b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + 2 \, b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, \sqrt {a + b} f}, \frac {\sqrt {-a - b} \arctan \left (\frac {\sqrt {-a - b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a + b}\right )}{{\left (a + b\right )} f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(2*(a*cos(f*x + e)^2 - 2*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + 2*
b)/(cos(f*x + e)^2 - 1))/(sqrt(a + b)*f), sqrt(-a - b)*arctan(sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x
 + e)^2)*cos(f*x + e)/(a + b))/((a + b)*f)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)2/f/2*(sqrt(a+b)*ln(abs((a+b)*(-tan((f*x+exp(1))/2)^2*sqrt(a+b
)+sqrt(a*tan((f*x+exp(1))/2)^4+b*tan((f*x+exp(1))/2)^4-2*a*tan((f*x+exp(1))/2)^2+2*b*tan((f*x+exp(1))/2)^2+a+b
))+sqrt(a+b)*(a-b)))/(-2*a-2*b)+sqrt(a+b)*ln(abs(-tan((f*x+exp(1))/2)^2*sqrt(a+b)+sqrt(a+b)+sqrt(a*tan((f*x+ex
p(1))/2)^4+b*tan((f*x+exp(1))/2)^4-2*a*tan((f*x+exp(1))/2)^2+2*b*tan((f*x+exp(1))/2)^2+a+b)))/(2*a+2*b)-sqrt(a
+b)*ln(abs(-tan((f*x+exp(1))/2)^2*sqrt(a+b)-sqrt(a+b)+sqrt(a*tan((f*x+exp(1))/2)^4+b*tan((f*x+exp(1))/2)^4-2*a
*tan((f*x+exp(1))/2)^2+2*b*tan((f*x+exp(1))/2)^2+a+b)))/(2*a+2*b))/sign(tan((f*x+exp(1))/2)^2-1)

________________________________________________________________________________________

maple [B]  time = 1.74, size = 280, normalized size = 6.51 \[ \frac {\sqrt {\frac {b +a \left (\cos ^{2}\left (f x +e \right )\right )}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \left (\ln \left (-\frac {2 \left (-1+\cos \left (f x +e \right )\right ) \left (\sqrt {\frac {b +a \left (\cos ^{2}\left (f x +e \right )\right )}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right ) \sqrt {a +b}+\sqrt {\frac {b +a \left (\cos ^{2}\left (f x +e \right )\right )}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}-a \cos \left (f x +e \right )+b \right )}{\sin \left (f x +e \right )^{2} \sqrt {a +b}}\right )+\ln \left (-\frac {4 \left (\sqrt {\frac {b +a \left (\cos ^{2}\left (f x +e \right )\right )}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right ) \sqrt {a +b}+a \cos \left (f x +e \right )+\sqrt {\frac {b +a \left (\cos ^{2}\left (f x +e \right )\right )}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}+b \right )}{-1+\cos \left (f x +e \right )}\right )\right ) \left (\sin ^{2}\left (f x +e \right )\right )}{2 f \sqrt {\frac {b +a \left (\cos ^{2}\left (f x +e \right )\right )}{\cos \left (f x +e \right )^{2}}}\, \cos \left (f x +e \right ) \left (-1+\cos \left (f x +e \right )\right ) \sqrt {a +b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

1/2/f*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(ln(-2*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2
)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x
+e)^2/(a+b)^(1/2))+ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+a*cos(f*x+e)+((b+
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e))))*sin(f*x+e)^2/((b+a*cos(f*x+e)^2)/cos(
f*x+e)^2)^(1/2)/cos(f*x+e)/(-1+cos(f*x+e))/(a+b)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc \left (f x + e\right )}{\sqrt {b \sec \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {1}{\sin \left (e+f\,x\right )\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(e + f*x)*(a + b/cos(e + f*x)^2)^(1/2)),x)

[Out]

int(1/(sin(e + f*x)*(a + b/cos(e + f*x)^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc {\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(csc(e + f*x)/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________